Intermittent hypoxic resistance training: does it provide added benefit?
نویسندگان
چکیده
INTRODUCTION Methods to enhance the adaptive responses to resistance training are of great interest to clinical and athletic populations alike. Altering the muscular environment by restricting oxygen availability during resistance exercise has been shown to induce favorable physiological adaptations. An acute hypoxic stimulus during exercise essentially increases reliance on anaerobic pathways, augmenting metabolic stress responses, and subsequent hypertrophic processes (Scott et al., 2014). Hypoxic strategies during resistance exercise were originally investigated using blood flow restriction (BFR) methods (Takarada et al., 2000), whereby a cuff is applied proximally to a limb to partially limit arterial inflow while occluding venous outflow from the working muscles. Another method that has been investigated more recently is performing resistance exercise in systemic hypoxia, by means of participants breathing a hypoxic air mixture. The addition of systemic hypoxia to resistance training has previously resulted in significantly enhanced hypertrophic and strength responses to both lowload (20% 1-repetition maximum; 1RM) (Manimmanakorn et al., 2013a,b) and moderate-load (70% 1RM) (Nishimura et al., 2010) resistance training. While research into intermittent hypoxic resistance training (IHRT) is in its infancy, some studies have reported conflicting results, which is likely due to differing research methodologies. In a recent review, it has been suggested that many of the potential mechanisms underpinning muscle adaptations to BFR training and IHRT are linked to the muscular oxygenation status and degree of metabolic stress associated with exercise (Scott et al., 2014). The purpose of this paper is to briefly summarize the adaptive responses that have been reported following both lowand moderate-load IHRT and to highlight key areas of concern for IHRT methodology, including the level of hypoxia used and the degree of metabolic stress imposed during exercise.
منابع مشابه
High-Intensity Exercise in Hypoxia: Is Increased Reliance on Anaerobic Metabolism Important?
Hypoxic training strategies to optimize physiological exercise responses have been extensively investigated, although often with limited performance benefits over the equivalent normoxic training (Roels et al., 2007). Recently, novel methods including intermittent hypoxic resistance training (IHRT) and repeat sprint training in hypoxia (RSH) have begun to receive research attention. Early resul...
متن کاملIntermittent normobaric hypoxic exposures at rest: effects on performance in normoxia and hypoxia.
INTRODUCTION It has been speculated that short (-1-h) exposures to intermittent normobaric hypoxia at rest can enhance subsequent exercise performance. Thus, the present study investigated the effect of daily resting intermittent hypoxic exposures (IHE) on peak aerobic capacity and performance under both normoxic and hypoxic conditions. METHODS Eighteen subjects were equally assigned to eithe...
متن کاملIntermittent hypoxia: mechanisms of action and some applications to bronchial asthma treatment.
Being essentially cut off from the global scientific community, Ukrainian and Russian scientists have developed a new concept for the beneficial use of adaptation to artificial intermittent hypoxia in treating of many diseases. The basic mechanisms underlying intermittent hypoxic training were elaborated mainly in three areas: regulation of respiration, free radical production and mitochondrial...
متن کاملCombining hypoxic methods for peak performance.
New methods and devices for pursuing performance enhancement through altitude training were developed in Scandinavia and the USA in the early 1990s. At present, several forms of hypoxic training and/or altitude exposure exist: traditional 'live high-train high' (LHTH), contemporary 'live high-train low' (LHTL), intermittent hypoxic exposure during rest (IHE) and intermittent hypoxic exposure du...
متن کاملComparing the Effect of Continuous and Intermittent Exercise Training Regimens on soleus GLUT4, AMPK and Insulin Receptor in Streptozotocin-Induced Diabetic Rats
Background: The impact of continuous and intermittent training on diabetes mellitus condition and its mechanism is not well understood. The aim of the present study was to assess the changes in glucose uptake after 6 weeks of continuous and intermittent exercise training protocols in healthy and streptozotocin (STZ)-induced diabetic rats. Method: Sixty male al...
متن کامل